Logarithm Basics:

For every logarithmic equation of the form \(N = \log_b(X) \) there is an exactly equivalent exponential equation: \(X = b^N \)

\(\log_b(X) \) is “the logarithm to the base b of X” and is the number to which you raise b in order to get X

So we can think of logarithms as powers of the base, b.

“Taking the logarithm of” and “raising to a power” are inverse operations, i.e., each “undoes” the other:

\(N = \log_b(b^N) \quad \text{and} \quad X = b^{\log_b(X)} \)

For every rule for exponents there is a corresponding rule for logarithms:

<table>
<thead>
<tr>
<th>Exponents</th>
<th>Logarithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b^0 = 1)</td>
<td>(\log_b(1) = 0)</td>
</tr>
<tr>
<td>(b^1 = b)</td>
<td>(\log_b(b) = 1)</td>
</tr>
<tr>
<td>(b^{-1} = 1/b)</td>
<td>(\log_b(1/b) = -1)</td>
</tr>
<tr>
<td>(b^N \cdot b^M = b^{N+M})</td>
<td>(\log_b(X \cdot Y) = \log_b(X) + \log_b(Y))</td>
</tr>
<tr>
<td>(b^N / b^M = b^{N-M})</td>
<td>(\log_b(X/Y) = \log_b(X) - \log_b(Y))</td>
</tr>
<tr>
<td>((b^N)^M = b^{N \cdot M})</td>
<td>(\log_b(X^N) = N \cdot \log_b(X))</td>
</tr>
</tbody>
</table>

By convention: \(\log(X) = \log_{10}(X) \) Rule for changing base (e.g., to base 10):

\[\ln(X) = \log_e(X) \]

\[\log_b(X) = \frac{\log(X)}{\log(b)} \]

where \(e \approx 2.718 \)
Logarithms of integers up to 10:

<table>
<thead>
<tr>
<th>N</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(N)</td>
<td>0.30</td>
<td>0.48</td>
<td>0.60</td>
<td>0.70</td>
<td>0.78</td>
<td>0.85</td>
<td>0.90</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Exercises:

For each of 1 – 8, match the expression or equation with an equivalent expression or equation in a) – h).

1. \(\log_5 25 \)
2. \(2^5 = X \)
3. \(\log_5 5 \)
4. \(\log_2 1 \)
5. \(\log_5 5^x \)
6. \(\log_X 27 = 5 \)
7. \(8 = 2^X \)
8. \(X^{-2} = 5 \)

a) \(1 \) b) \(X \) c) \(X^5 = 27 \) d) \(\log_2 X = 5 \) e) \(\log_2 8 = X \)
 f) \(\log_X 5 = -2 \)
g) \(2 \) h) \(0 \)

Simplify:

9. \(\log_{10} 1000 \)
10. \(\log_2 16 \)
11. \(\log_8 1 \)
12. \(\log_5 9^5 \)
13. \(\log_{10} 0.01 \)
14. \(\log_2 8 \)
15. \(\log_2 8 \)
16. \(\log_4 \frac{1}{4} \)
17. \(\log_7 \frac{1}{49} \)
18. \(\log_5 125 \)
19. \(\log_9 3 \)
20. \(\log_9 27 \)
21. \(\log_{27} 9 \)
22. \(\log_{16} 64 \)
23. \(6^{\log_6 13} \)
24. \(\log_{1/4} \frac{1}{64} \)
25. \(\log_{81} 3 \times \log_3 81 \)
26. \(\log_{10}(\log_4(\log_3 81)) \)

Solve:

27. \(|\log_3 X| = 2 \)
28. \(\log_4(3X - 2) = 2 \)
29. \(\log_8 (2X + 1) = -1 \)
30. \(\log_{10}(X^2 + 21X) = 2 \)