

MC 2019 PROGRAMMING COMPETITION: ADVANCED (CREDIT TO UMUC CS FACULTY&MC
COMPUTER CLUB) 1

Montgomery College
2019 Programming Competition

Advanced Teams
Scoring:
 Each problem is worth of 10 points. There are 6 problems.
 Teams are ranked based on the number of points received, the highest score first.
 Teams that tie on points will be ranked according to the number of problems

solved/attempted.
 Teams that tie on both points and the number of problems solved/attempted will

be ranked according to the tie-break problem #6.

Criteria Points
Awarded

Compiles, runs, passes all (100%) testing 10

Compiles, runs,

passes more than 50% and less than 100% of testing

7

Compiles, runs, passes less than 50% of testing 3

Compiles, runs, passes all testing, but fails to implement the
solution as specified. For example, requirements call for the
use of a two-dimensional array, the submitted solution did
not use a two-dimensional array. Or, the requirement asks
for a recursive implementation, the submitted solution did
not use recursion.

5

Compiles, runs, hardcodes the expected output 0

Does not compile 0

Teams are required to return this problem set to the competition staff at
the end of the competition.

MC 2019 PROGRAMMING COMPETITION: ADVANCED (CREDIT TO UMUC CS FACULTY&MC
COMPUTER CLUB) 2

Problem #1: Vector3D Class
Write a class Vector3D that contains three instance variables x, y and z of type double. Provide
a constructor that accepts the values of x, y and z and initializes the corresponding instance
variables with those values. Provide a public method named length that computes and returns
the length of the vector by computing the distance between the point whose coordinates are x, y
and z and the origin. The class Vector3D should implement the predefined interface Comparable
and consequently override the method compareTo that compares two vectors according to their
lengths by calling the method length.

In addition, it should override the toString method so it formats a vector as follows (x, y, z).

A second class should contain the main method. It should read in vectors from a file named
vectors.txt that contains at most 20 vectors. It should determine the vector with the greatest
length and display that vector and its length. If the file contains two such vectors it should
display the first one.

Given the following input file that contains one vector per line:

10.5 7.4 10.4
6.3 5.8 11.8
13.6 9.3 12.7
6.3 8.3 2.9
11.5 12.6 3.9
9.3 12.7 13.6
10.3 2.5 8.3

The program should produce the following output:

Longest vector is (13.6, 9.3, 12.7) of length 20.802

Notes: Use the following formula to calculate the length of the vector:

Square root of (x2 + y2 + z2)

MC 2019 PROGRAMMING COMPETITION: ADVANCED (CREDIT TO UMUC CS FACULTY&MC
COMPUTER CLUB) 3

Problem #2: Weighted Shape Hierarchy
Write an abstract class WeightedShape that contains one private instance integer variable
weight and one private class (static) integer variable totalWeight. It should contain a
constructor that is supplied with the weighting value that indicates the importance of the shape
and initializes the instance variable weight with the value of that parameter and adds that weight
to the class variable totalWeight. It should also have an abstract method named perimeter that
returns a double value, and a public method weightedPerimeter that returns the product of the
weight of that shape times its perimeter. In addition it should have a class (static) method that
returns the total weight of all shapes that have been created.

It should have two subclasses. The first subclass, Rectangle, should have two instance variables
that contain the width and height of the rectangle. The second subclass, Circle, should have one
instance variable that contains the diameter of the circle. Each one should have a constructor that
that is supplied with the weight and values necessary to initialize the other instance variables.
Each subclass should also override the abstract method perimeter computing and returning the
rectangle’s perimeter in the case of the Rectangle class and computing and returning the circle’s
circumference for the Circle class.

A third class should contain the main method, which contains the following array:

WeightedShape[] shapes = {new Circle(2, 4.5),
 new Rectangle(1, 1.0, 5.6), new Circle(1, 3.5)};

The main method should also contain a for-each loop that iterates through the array to compute
the total weighted perimeter of all the shapes and then compute and display the weighted average
in 3 decimal places. The output should be as follows:

Weighted average perimeter = 13.117

MC 2019 PROGRAMMING COMPETITION: ADVANCED (CREDIT TO UMUC CS FACULTY&MC
COMPUTER CLUB) 4

Problem #3: Hexadecimal Selection Sort
Write a program that reads in a list of ten integers, written in hexadecimal, base 16, from the
keyboard and store them in an array. You may assume that each of these numbers contains no
more than three hexadecimal digits and that the alphabetic letters a-f will always appear in lower
case.

These integers should be sorted using a selection sort, which segments the array into a sorted
section and unsorted section. Initially the whole array is unsorted. The unsorted section is
repeatedly searched for the smallest value in the unsorted section. Once found, that smallest
value is swapped with the position in the array after the last sorted value, increasing the number
of sorted elements by one and decreasing the unsorted section by one. The process is repeated
until no elements remain in the unsorted section.

After each additional element is added to the sorted section the contents of the entire array
should be displayed on a separate line.

The following is a sample run of this program:

Enter ten hexadecimal integers: 7d 1df c99 45 f3 a 1b cc 10 23

00a 1df c99 045 0f3 07d 01b 0cc 010 023

00a 010 c99 045 0f3 07d 01b 0cc 1df 023

00a 010 01b 045 0f3 07d c99 0cc 1df 023

00a 010 01b 023 0f3 07d c99 0cc 1df 045

00a 010 01b 023 045 07d c99 0cc 1df 0f3

00a 010 01b 023 045 07d c99 0cc 1df 0f3

00a 010 01b 023 045 07d 0cc c99 1df 0f3

00a 010 01b 023 045 07d 0cc 0f3 1df c99

00a 010 01b 023 045 07d 0cc 0f3 1df c99

MC 2019 PROGRAMMING COMPETITION: ADVANCED (CREDIT TO UMUC CS FACULTY&MC
COMPUTER CLUB) 5

Problem #4: Alphabetic Inflection Points
Write a program that reads in a string of lower case letters from the keyboard and determines the
alphabetical inflection points that include both peaks and valleys. A peak is the point where the
sequence of letters changes from alphabetic order to reverse alphabetic order. A valley is the
point where the sequence of letters changes from reverse alphabetic order to alphabetic order.

A check should be made first to ensure that no letter appears twice in a row and that all
characters are lower case letters. If either check fails, an error message should be displayed and
the program should terminate.

The output should contain each inflection point labeling it as either a peak or valley and
displaying the three letters associated with that point of inflection.
The following are three sample runs of this program:

Enter a string of lower case letters: abgjgekkgiop
Contains two of the same characters in a row

Enter a string of lower case letters: abcJndr5s
Contains characters that are not lower case letters

Enter a string of lower case letters: abdghfdcbgklprogbdjz
Peak: ghf
Valley: cbg
Peak: pro
Valley: gbd

MC 2019 PROGRAMMING COMPETITION: ADVANCED (CREDIT TO UMUC CS FACULTY&MC
COMPUTER CLUB) 6

Problem #5: Search for Closest and Furthest Pairs
Write a program that reads in ten integers into an array. If there are any duplicates in the array,
display a message and terminate the program. Otherwise search that array for the pair of distinct
integers that are numerically closest together and the pair that is numerically furthest apart. If
there is more one pair of either kind, choose the pair containing the element that appears first in
the list. Finally, display those two pairs.

The following are two sample runs of this program:

Enter 10 integers: 34 83 92 12 29 123 16 83 98 16
Array contains duplicates

Enter 10 integers: 13 95 187 25 141 26 98 24 94 48
Pair numerically closest together is: 95 94
Pair numerically furthest apart is: 13 187

Problem #6 (Tie-Breaker): Sort Ragged Array
Write a method called sort7thRaggedArray that takes a 2D ragged array.
The method will return a new sorted ragged array based on the following rule.
The rows should be sorted according to the sum of each element which is divisible by 7 in the
ascending order.

The following is a sample run of this program:

Given ragged array:
[39, 27, 1, 42, 35, 3],

[14, 93, 91, 90],

[5, 56, 10, 98, 2],

[105, 7, 5, 17]

the sum would be

row1: 77

row2: 105

row3: 154

row4: 112

so, the method would return an 2d array with the following order:

{{39,27,1,42,35,3},
{14,93,91,90},
{105,7,5,17},
{5,56,10,98,2}}

